Format

Send to

Choose Destination
See comment in PubMed Commons below
FEMS Microbiol Rev. 1996 Mar;18(1):5-63.

Tungsten in biological systems.

Author information

1
Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602-7229, USA.

Abstract

Tungsten (atomic number 74) and the chemically analogous and very similar metal molybdenum (atomic number 42) are minor yet equally abundant elements on this planet. The essential role of molybdenum in biology has been known for decades and molybdoenzymes are ubiquitous. Yet, it is only recently that a biological role for tungsten has been established in prokaryotes, although not as yet in eukaryotes. The best characterized organisms with regard to their metabolism of tungsten are certain species of hyperthermophilic archaea (Pyrococcus furiosus and Thermococcus litoralis), methanogens (Methanobacterium thermoautotrophicum and Mb. wolfei), Gram-positive bacteria (Clostridium thermoaceticum, C. formicoaceticum and Eubacterium acidaminophilum), Gram-negative anaerobes (Desulfovibrio gigas and Pelobacter acetylenicus) and Gram-negative aerobes (Methylobacterium sp. RXM). Of these, only the hyperthermophilic archaea appear to be obligately tungsten-dependent. Four different types of tungstoenzyme have been purified: formate dehydrogenase, formyl methanufuran dehydrogenase, acetylene hydratase, and a class of phylogenetically related oxidoreductases that catalyze the reversible oxidation of aldehydes. These are carboxylic reductase, and three ferredoxin-dependent oxidoreductases which oxidize various aldehydes, formaldehyde and glyceraldehyde 3-phosphate. All tungstoenzymes catalyze redox tungsten in these enzymes is bound by a pterin moiety similar to that found in molybdoenzymes. The first crystal structure of a tungsten- or pterin-containing enzyme, that of aldehyde ferredoxin oxidoreductase from P. furiosus, has revealed a catalytic site with one W atom coordinated to two pterin molecules which are themselves bridged by a magnesium ion. The geochemical, ecological, biochemical and phylogenetic basis for W- vs. Mo-dependent organisms is discussed.

PMID:
8672295
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center