Format

Send to

Choose Destination
See comment in PubMed Commons below
EMBO J. 1996 Aug 1;15(15):3993-4000.

The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli.

Author information

1
Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4255, USA.

Abstract

dsrA encodes a small, untranslated RNA. When over-expressed, DsrA antagonizes the H-NS-mediated silencing of numerous promoters. Cells devoid of DsrA grow normally and show little change in the expression of a number of H-NS-silenced genes. Expression of a transcriptional fusion of lacZ to dsrB, the gene next to dsrA, is significantly lower in cells carrying mutations in dsrA. All expression of beta-galactosidase from the dsrB::lacZ fusion is also dependent on the stationary phase sigma factor, RpoS. DsrA RNA was found to regulate dsrB::lacZ indirectly, by modulating RpoS synthesis. Levels of RpoS protein are substantially lower in a dsrA mutant, both in stationary and exponential phase cells. Mutations in dsrA decrease the expression of an RpoS::LacZ translational fusion, but not a transcriptional fusion, suggesting that DsrA is acting after transcription initiation. While RpoS expression is very low in exponential phase at temperatures of 30 degrees C and above, at 20 degrees C there is substantial synthesis of RpoS during exponential growth, all dependent on DsrA RNA. dsrA expression is also increased at low temperatures. These results suggest a new role for RpoS during exponential growth at low temperatures, mediated by DsrA.

PMID:
8670904
PMCID:
PMC452119
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center