Send to

Choose Destination
J Biol Chem. 1996 Jun 7;271(23):13861-7.

Human Ku autoantigen binds cisplatin-damaged DNA but fails to stimulate human DNA-activated protein kinase.

Author information

Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, USA.


We have identified a series of proteins based on an affinity for cisplatin-damaged DNA. One protein termed DRP-1 has been purified to homogeneity and was isolated as two distinct complexes. The first complex is a heterodimer of 83- and 68-kDa subunits, while the second complex is a heterotrimer of 350-, 83-, and 68-kDa subunits in a 1:1:1 ratio. The 83- and 68-kDa subunits in each complex are identical. The 83-kDa subunit of DRP-1 was identified as the p80 subunit of Ku autoantigen by N-terminal protein sequence analysis and reactivity with a monoclonal antibody directed against human Ku p80 subunit. The 68-kDa subunit of DRP-1 cross-reacted with monoclonal antisera raised against the Ku autoantigen p70 subunit. The 350-kDa subunit was identified as DNA-PKcs, the catalytic subunit of the human DNA-activated protein kinase, DNA-PK. DRP-1/Ku DNA binding was assessed in mobility shift assays and competition binding assays using cisplatin-damaged DNA. Results indicate that DNA binding was essentially unaffected by cisplatin-DNA adducts in the presence or absence of DNA-PKcs. DNA-PK activity was only stimulated with undamaged DNA, despite the ability of Ku to bind to cisplatin-damaged DNA. The lack of DNA-PK stimulation by cisplatin-damaged DNA correlated with the extent of cisplatin-DNA adduct formation. These results demonstrate that Ku can bind cisplatin-damaged DNA but fails to activate DNA-PK. These results are discussed with respect to the repair of cisplatin-DNA adducts and the role of DNA-PK in coordinating DNA repair processes.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center