Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1996 Jun 7;271(23):13407-16.

Structural organization of the human and mouse laminin beta2 chain genes, and alternative splicing at the 5' end of the human transcript.

Author information

Laboratory of Molecular Pathology, University Institute of Pathological Anatomy, 2100 Copenhagen, Denmark.


We have determined the structural organization of the human and mouse genes that encode the laminin beta2 chain (s-laminin), an essential component of the basement membranes of the neuromuscular synapse and the kidney glomerulus. The human and mouse genes have a nearly identical exon-intron organization and are the smallest laminin chain genes characterized to date, due to the unusually small size of their introns. The laminin beta2 chain genes of both species consist of 33 exons that span </=12 kilobase pairs of genomic DNA. The exon-intron pattern of the laminin beta2 chain gene is also highly similar to that of the human genes encoding the homologous laminin beta1 and beta3 chains. The putative promoter regions of the human and mouse laminin beta2 chain genes have features characteristic of the promoters of genes that have a limited tissue expression. Considerable conservation of the intron sequences of the mouse and human genes was observed. The first intron of the human gene, located 1 base pair upstream of the translation start codon, contains a non-consensus 5' splice site. This intron was shown to be inefficiently spliced in humans, suggesting that post-transcriptional mechanisms may be involved in the regulation of laminin beta2 chain gene expression.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center