Format

Send to

Choose Destination
Nature. 1996 Jun 20;381(6584):702-6.

RAPID and opposite effects of BDNF and NGF on the functional organization of the adult cortex in vivo.

Author information

1
Department of Psychobiology and the Center for Learning and Memory, University of California at Irvine, 92717, USA.

Abstract

The adult cortex is thought to undergo plastic changes that are closely dependent on neuronal activity (reviewed in ref. 1), although it is not yet known what molecules are involved. Neurotrophins and their receptors have been implicated in several aspects of developmental plasticity, and their expression in the adult cortex suggests additional roles in adult plasticity. To examine these potential roles in vivo, we used intrinsic-signal optical imaging to quantify the effects of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) on the functional representation of a stimulated whisker in the 'barrel' subdivision of the rat somatosensory cortex. Topical application of BDNF resulted in a rapid and long-lasting decrease in the size of a whisker representation, and a decrease in the amplitude of the activity-dependent intrinsic signal. In contrast, NGF application resulted in a rapid but transient increase in the size of a representation, and an increase in the amplitude of the activity-dependent intrinsic signal. These results demonstrate that neurotrophins can rapidly modulate stimulus-dependent activity in adult cortex, and suggest a role for neurotrophins in regulating adult cortical plasticity.

PMID:
8649516
DOI:
10.1038/381702a0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center