Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1996 Jun;16(6):3138-55.

A developmentally modulated chromatin structure at the mouse immunoglobulin kappa 3' enhancer.

Author information

Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA.


Transcription of the mouse immunoglobulin kappa gene is controlled by two enhancers: the intronic enhancer (Ei) that occurs between the joining (J kappa) and constant (C kappa) exons and the 3' enhancer (E3') located 8.5 kb downstream of the gene. To understand the role of E3' in the activation of the mouse immunoglobulin kappa gene, we studied its chromatin structure in cultured B-cell lines arrested at various stages of differentiation. We found that 120 bp of the enhancer's transcriptional core becomes DNase I hypersensitive early in B-cell development. Genomic footprinting of pro-B and pre-B cells localized this chromatin alteration to B-cell-specific protections at the region including the direct repeat (DR) and the sequence downstream of the DR (DS), the PU.1-NFEM-5 site, and the core's E-box motif, identifying bound transcription factors prior to kappa gene rearrangement. Early footprints were, however, not detected at downstream sites proposed to play a negative role in transcription. The early chromatin structure persisted through the mature B-cell stage but underwent a dramatic shift in plasma cells, correlating with the loss of guanosine protection within the DR-DS junction and the appearance of novel footprints at a GC-rich motif upstream and the NF-E1 (YY1/delta)-binding site downstream. Gel shift analysis demonstrated that the DR-DS junction is bound by a factor with properties similar to those of BSAP (B-cell-specific activator protein). These results reveal developmental-stage-specific changes in the composition of nuclear factors bound to E3', clarify the role of factors that bind constitutively in vitro, and point to the differentiation of mature B cells to plasma cells as an important transitional point in the function of this enhancer. The observed changes in nuclear factor composition were accompanied by the rearrangement of positioned nucleosomes that flank the core region, suggesting a role for both nuclear factors and chromatin structure in modulating kappa E3' function during B-cell development. The functional implications of the observed chromatin alterations are discussed in the context of recent studies on kappa E3' and the factors that bind to it.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center