Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1996 May 3;271(18):10996-1000.

Inhibition of beta-ketoacyl-acyl carrier protein synthase III (FabH) by acyl-acyl carrier protein in Escherichia coli.

Author information

  • 1Department of Biochemistry, St Jude Children's Research Hospital, Memphis, Tennessee 38101, USA.


beta-Ketoacyl-acyl carrier protein (ACP) synthase III (the fabH gene product) condenses acetyl-CoA with malonyl-ACP to initiate fatty acid biosynthesis in the dissociated, type II fatty acid synthase systems typified by Escherichia coli. The accumulation of malonyl-acyl carrier protein (ACP) following the inhibition of a reconstituted fatty acid synthase system by acyl-ACP implicated synthase III (FabH) as a target for acyl-ACP regulation (Heath, R. J., and Rock, C. O. (1996) J. Biol. Chem. 271, 1833-1836); therefore, the FabH protein was purified and its biochemical and regulatory properties examined. FabH exhibited a Km of 40 microM for acetyl-CoA and 5 microM for malonyl-ACP. FabH also accepted other acyl-CoAs as primers with the rank order of activity being acetyl-CoA approximately propionyl-CoA >> butyryl-CoA. FabH utilized neither hexanoyl-CoA nor octanoyl-CoA. Acyl-ACPs suppressed Fabh activity, and their potency increased with increasing acyl chain length between 12 and 20 carbon atoms. Nonesterified ACP was not an inhibitor. Acyl-ACP inhibition kinetics were mixed with respect to acetyl-CoA, but were competitive with malonyl-ACP, indicating that acyl-ACPs decrease FabH activity by binding to either the free enzyme or the acyl-enzyme intermediate. These data support the concept that the inhibition of chain initiation at the beta-ketoacyl-ACP synthase III step contributes to the attenuation of fatty acid biosynthesis by acyl-ACP.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center