Send to

Choose Destination
Mol Gen Genet. 1996 Apr 10;250(6):655-64.

The chloroplast chlL gene of the green alga Chlorella vulgaris C-27 contains a self-splicing group I intron.

Author information

Center for Gene Research, Nagoya University, Japan.


The chlL gene product is involved in the light-independent synthesis of chlorophyll in photosynthetic bacteria, green algae and non-flowering plants. The chloroplast genome of Chlorella vulgaris strain C-27 contains the first example of a split chlL gene, which is interrupted by 951 bp group I intron in the coding region. In vitro synthesized pre-mRNA containing the entire intron and parts of the flanking exon sequence is able to efficiently self-splice in vitro in the presence of a divalent and a monovalent cation and GTP, to yield the ligated exons and other splicing intermediates characteristic of self-splicing group I introns. The 5' and 3' splice sites were confirmed by cDNA sequencing and the products of the splicing reaction were characterized by primer extension analysis. The absence of a significant ORF in the long P9 region (522 nt), separating the catalytic core from the 3' splice site, makes this intron different from the other known examples of group I introns. Guanosine-mediated attack at the 3' splice site and the presence of G-exchange reaction sites internal to the intron are some other properties demonstrated for the first time by an intron of a protein-coding plastid gene.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center