Send to

Choose Destination
J Med Chem. 1996 Apr 26;39(9):1823-35.

Tyrosine kinase inhibitors. 10. Isomeric 4-[(3-bromophenyl)amino]pyrido[d]-pyrimidines are potent ATP binding site inhibitors of the tyrosine kinase function of the epidermal growth factor receptor.

Author information

Cancer Society Research Laboratory, University of Auckland School of Medicine, New Zealand.


Following the discovery of the very high inhibitory ability of the 4-[(3-bromophenyl)amino]-quinazolines against the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) (e.g., 3, IC50 0.029 nM), four series of related pyrido[d]pyrimidines bearing electron-donating groups at the 6- or 7-positions have been synthesized and evaluated. The compounds were prepared by nucleophilic substitution of the corresponding 6- and 7-fluoro analogues. While members of all series showed potent inhibitory activity against isolated EGFR, there were important differences between the different isomeric pyrido[d]pyrimidines and the parent quinazolines. Overall, the [3,4-d] and [4,3-d] series were the most potent, followed by the [3,2-d] compounds, with the [2,3-d] analogues being least active. Whereas in the parent quinazoline series the addition of steric bulk to a 6- or 7-NH2 substituent (i.e., NHMe and NMe2 groups) dramatically decreased potency, no such trend was discernable in the [3,2-d] series. Furthermore, in the 7-substituted pyrido[4,3-d]- and 6-substituted pyrido[3,4-d]pyrimidine series, and to a limited extent in the 7-substituted pyrido[2,3-d] series, such substitution increased potency dramatically, to the extent that the 7-(methylamino)pyrido[4,3-d]pyrimidine (5f) (IC50 0.13 nM) and 6-(methylamino)pyrido[3,4-d]pyrimidine (7f) (IC50 0.008 nM) constitute important new leads. Selected compounds were evaluated for their ability to inhibit EGFR autophosphorylation in A431 cells, and a positive quantitative correlation was found between this activity and inhibitory activity against the isolated enzyme.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center