Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1996 Apr 19;271(16):9801-8.

Identification of a novel membrane transporter associated with intracellular membranes by phenotypic complementation in the yeast Saccharomyces cerevisiae.

Author information

  • 1Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.


A partial mouse cDNA was isolated by its ability to functionally complement a thymidine transport deficiency in plasma membranes of the yeast, Saccharomyces cerevisiae. The full-length cDNA encoded a previously unidentified 27-kDa protein (mouse transporter protein (MTP)) with four predicted transmembrane-spanning domains. MTP mRNA was detected in cells of several mammalian species, and its predicted protein sequence exhibited near identity (98%) with that of a human cDNA (HUMORF13). MTP and its homologs evidently reside in an intracellular membrane compartment because a protein (about 24 kDa) that was recognized by MTP-specific antibodies was observed in a subcellular fraction of rat hepatocytes enriched for Golgi membranes. Deletion of the hydrophilic C terminus of MTP, which encompassed two putative signal motifs for intracellular localization (Tyr-X-X-hydrophobic amino acid), allowed expression of recombinant protein (MTP deltaC) in plasma membranes of Xenopus laevis oocytes. MTP deltaC-expressing oocytes exhibited greater fragility than nonexpressing oocytes, and those that survived the experimental manipulations were capable of mediated uptake of thymidine, uridine, and adenosine. Thymidine uptake by MTP deltaC-expressing oocytes was inhibited by thymine and dTMP. MTP may function in the transport of nucleosides and/or nucleoside derivatives between the cytosol and the lumen of an intracellular membrane-bound compartment.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center