Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1996 Apr 12;271(15):8925-35.

Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina. cDNA and deduced amino acid sequences.

Author information

CSIRO Division of Tropical Animal Production, CSIRO Private Mail Bag 3, Indooroopilly, 4068, Queensland, Australia.


The peritrophic membrane is a semi-permeable chitinous matrix lining the gut of most insects and is thought to have important roles in the maintenance of insect gut structure, facilitation of digestion, and protection from invasion by microrganisms and parasites. Proteins are integral components of this matrix, although the structures and functions of these proteins have not been characterized in any detail. The peritrophic membrane from the larvae of the fly Lucilia cuprina, the primary agent of cutaneous myiasis in sheep, was shown to contain six major integral peritrophic membrane proteins. Two of these proteins, a 44-kDa glycoprotein (peritrophin-44) and a 48-kDa protein (peritrophin-48) together represent >70% of the total mass of the integral peritrophic membrane proteins. Peritrophin-44 was purified and its complete amino acid sequence was determined by cloning and sequencing the DNA complementary to its mRNA. The deduced amino acid sequence codes for a protein of 356 amino acids containing an amino-terminal signal sequence followed by five similar but nonidentical domains, each of approximately 70 amino acids and characterized by a specific register of 6 cysteines. One of these domains was also present in the noncatalytic regions of chitinases from Brugia malayi, Manduca sexta, and Chelonus. Peritrophin-44 has a uniform distribution throughout the larval peritrophic membrane. Reverse transcriptase-polymerase chain reaction detected the expression of peritrophin-44 in all three larval instars but only trace levels in adult L. cuprina. The protein binds specifically to tri-N-acetyl chitotriose and reacetylated chitosan in vitro. It is concluded that the multiple cysteine-rich domains in peritrophin-44 are responsible for binding to chitin, the major constituent of peritrophic membrane. Peritrophin-44 probably has roles in the maintenance of peritrophic membrane structure and in the determination of the porosity of the peritrophic membrane. This report represents the first characterization of an insect peritrophic membrane protein.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center