Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1996 Mar 8;271(10):5589-94.

Site-specific dephosphorylation of tau protein at Ser202/Thr205 in response to microtubule depolymerization in cultured human neurons involves protein phosphatase 2A.

Author information

David Mahoney Institute of Neurological Sciences and the Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-4283, USA.


Tau proteins isolated from paired helical filaments, the major building blocks of Alzheimer's disease neurofibrillary tangle, are abnormally phosphorylated and unable to bind microtubules. To examine the dynamics of tau phosphorylation and to identify specific tau phosphorylation sites involved in the stabilization of microtubules, we treated cultured postmitotic neuron-like cells (NT2N) derived from a human teratocarcinoma cell line (NTera2/D1) with drugs that depolymerize microtubules (i.e. colchicine or nocodazole). This led to the recovery of dephosphorylated tau from the NT2N cells as monitored by a relative increase in the electrophoretic mobility of tau and an increase in the turnover of [32P]PO4-labeled tau. However, not all phosphorylation sites on tau are affected by colchicine or nocodazole. Ser202/Thr205 appears to be completely and specifically dephosphorylated by protein phosphatase 2A since this dephosphorylation was blocked by inhibitors of protein phosphatase 2A but not by inhibitors of protein phosphatase 2B. These findings, together with the recent observation that protein phosphatase 2A is normally bound to microtubules in intact cells, suggest that the polymerization state of microtubules could modulate the phosphorylation state of tau at specific sites in the normal and Alzheimer's disease brain.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center