Send to

Choose Destination
Biochemistry. 1996 Apr 23;35(16):5229-37.

Phospholipase D regulation by a physical interaction with the actin-binding protein gelsolin.

Author information

Research Department, CIBA Pharmaceutical, Summit, New Jersey 07901, USA.


Increases in intracellular phosphatidic acid levels caused by receptor- mediated activation of phospholipase D (PLD) have been implicated in many signal transduction pathways leading to cellular activation. PLD is known to be regulated by several means, including tyrosine kinase activity, increases in Ca2+, receptor-coupled G proteins, small GTP binding proteins, ceramide metabolisms, and protein kinase C. We have investigated a additional regulatory effect on PLD activity involving nucleoside triphosphates (NTPs). A NTP binding protein copurifies with LPD activity from rabbit brains using a GTP-agarose affinity column, and this protein stimulates PLD activity only in the absence of NPTs. The NTP effect is reversible and labile, and the binding protein is separable from the PLD activity by heparin-agarose chromatography. We identified this protein as the actin- binding protein gelsolin by amino acid sequencing following peptide mapping. This finding was verified by the co-immunoprecipitation of gelsolin and PLD activity as well as by the reconstitution of gelsolin- dependent nucleotide sensitive PLD activity by the addition of purified gelsolin-free PLD. Our data indicate that actin rearrangements and PLD signaling are coordinately regulated through the physical association between PLD and gelsolin and that this interaction may also serve to amplify both PLD signaling and actin reorganization.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center