Send to

Choose Destination
Neuropharmacology. 1995 Nov;34(11):1535-41.

Anatoxin-a-evoked [3H]dopamine release from rat striatal synaptosomes.

Author information

School of Biology and Biochemistry, University of Bath, UK.


Presynaptic nicotinic acetylcholine receptors on striatal nerve terminals modulate the release of dopamine. Using rat striatal synaptosomes loaded with [3H]dopamine, we have characterized the action of the selective nicotinic agonist, (+/-)anatoxin-a, with respect to [3H]dopamine release, in order to explore the mechanisms coupling nicotinic receptor activation to exocytosis. Anatoxin-a evoked [3H]dopamine release in a concentration-dependent and mecamylamine-sensitive manner, EC50 = 0.11 microM. The maximum [3H]dopamine release elicited by anatoxin-a was only 20% of the maximum elicited by KCl depolarization; there was no additivity between anatoxin-a and sub-maximal concentrations of KCl. Both agents stimulated Ca(2+)-dependent release that was equally sensitive to inhibition by 200 microM Cd2+. This result suggests that anatoxin-a-stimulated exocytosis is mediated by Ca2+ influx via voltage-sensitive Ca2+ channels, with little contribution from Ca2+ entering directly through the nicotinic receptor channel. This view is supported by the abolition of anatoxin-a-evoked [3H]dopamine release in Na(+)-depleted medium. A partial (40%) inhibition by tetrodotoxin was observed. These data suggest that activation of presynaptic nicotinic acetylcholine receptors by anatoxin-a results in an influx of Na+, producing sufficient local depolarization to open voltage-sensitive Ca2+ and Na+ channels. The latter may then amplify the response, activating further Ca2+ channels. The particular voltage-sensitive Ca2+ channels involved remain to be determined.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center