Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 1996 Mar;132(5):887-901.

Spc42p: a phosphorylated component of the S. cerevisiae spindle pole body (SPD) with an essential function during SPB duplication.

Author information

MRC Laboratory of Molecular Biology, Cambridge, England.


The 42-kD component of the S. cerevisiae spindle pole body (SPB) localizes to the electron-dense central plaque of the SPB. We have cloned the corresponding gene SPC42 (spindle pole component) and show that it is essential. Seven temperature-sensitive (ts) mutants in SPC42 were prepared by error-prone PCR. We found that a change to a proline residue in a potential coiled-coil region of Spc42p was responsible for the ts phenotype in at least three alleles, suggesting that formation of the coiled-coil is essential in normal function. The mutant cells showed a phenotype of predominantly single or bilobed SPBs often with an accumulation of unstructured electron-dense material associated with the bridge structure adjacent to the SPB. This phenotype suggests a defect in SPB duplication. This was confirmed by examining synchronized mutant cells that lose viability when SPB duplication is attempted. Spc42p is a phosphoprotein which shows some cell cycle-regulated phosphorylation. Overexpression of Spc42p causes the formation of a disc- or dome-shaped polymer composed of phosphorylated Spc42p, which is attached to the central plaque and associated with the outer nuclear membrane. Taken together, these data suggest that Spc42p forms a polymeric layer at the periphery of the SPB central plaque which has an essential function during SPB duplication and may facilitate attachment of the SPB to the nuclear membrane.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center