Format

Send to

Choose Destination
J Steroid Biochem Mol Biol. 1996 Jan;56(1-6 Spec No):209-19.

Diverse modes of action of progesterone and its metabolites.

Author information

1
Department of Physiology and Endocrinology, Medical College of Georgia, Augusta, 30912-3000, U.S.A.

Abstract

Progesterone and its metabolites have a variety of diverse effects in the brain, uterus, smooth muscle, sperm and the oocyte. The effects include changes in electrophysiological excitability, induction of anesthesia, regulation of gonadotropin secretion, regulation of estrogen receptors, modulation of uterine contractility and induction of acrosome reaction and oocyte maturation. The latency of the effects vary from several seconds to several hours. Thus, it is not surprising that multiple mechanisms of action are involved. The classical mechanism of steroid hormone action of intracellular receptor binding has been supplemented by the possibility of the steroid acting as a transcription factor after the binding of the receptor protein to DNA. Other mechanisms include influence of the steroids on membrane fluidity and acting through other cell signalling systems, membrane receptors and GABA(A) receptors. Of particular interest are multiple mechanisms for the same types of action. For example the effect of progesterone on gonadotropin release is largely exerted via the classical intracellular receptor as well as membrane receptors, whereas 3(alpha),5(alpha)-tetrahydroprogesterone-induced LH release occurs via the GABA(A) receptor system. The inhibition of uterine contractility by progesterone is regulated by progesterone receptors while the action of 3(alpha),5(alpha)-tetrahydroprogesterone on uterine contractility is regulated by GABA(A) receptors. The regulation of the differences in the pattern of progesterone effects on estrogen receptor dynamics in the anterior pituitary and the uterus in the same animal are also of considerable interest.

PMID:
8603042
DOI:
10.1016/0960-0760(95)00238-3
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center