Format

Send to

Choose Destination
FEBS Lett. 1996 Feb 19;380(3):251-6.

Association of Drosophila cysteine string proteins with membranes.

Author information

1
Hormone Research Institute, University of California, San Francisco, 94143-0534, USA.

Abstract

Cysteine string proteins are putative synaptic vesicle proteins that lack a transmembrane domain. Our analysis shows that Drosophila cysteine string proteins are extensively modified by hydroxylamine-sensitive fatty acylation. This modification could be responsible for association of csp's with membranes. Extensive deacylation of Dcsp's by a 20 h incubation in 1 M hydroxylamine, pH 7.0, or methanolic KOH produces a protein of 6-7 kDa lower mass than untreated Dcsp's. Surprisingly, the hydroxylamine treatment does not cause release of Dcsp's from membranes. On the other hand, alkaline stripping of membranes isolated from Drosophila brain by 0.1 M sodium carbonate, pH 11.5, causes a significant release of Dcsp's from membranes into the cytosol. These results indicate that fatty acylation may not form the main anchor of Dcsp's in membranes. Taking advantage of the endocytotic block in the Drosophila mutant shibire ts1, we analyzed the acylation states of Dcsp's in two stages during synaptic vesicle recycling and found no evidence for an acylation/deacylation cycle of Dcsp's in the brain nerve terminals.

PMID:
8601435
DOI:
10.1016/0014-5793(96)00026-9
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center