Format

Send to

Choose Destination
J Comp Physiol A. 1996 Feb;178(2):147-57.

Neurons with different temporal firing patterns in the inferior colliculus of the little brown bat differentially process sinusoidal amplitude-modulated signals.

Author information

1
Department of Physiology and Biophysics, University of Illinois at Urbana-Champaign 61801, USA.

Abstract

We examined how well single neurons in the inferior colliculus (IC) of an FM bat (Myotis lucifugus) processed simple tone bursts of different duration and sinusoidal amplitude-modulated (SAM) signals that approximated passively heard natural sounds. Units' responses to SAM tones, measured in terms of average spike count and firing synchrony to the modulation envelope, were plotted as a function of the modulation frequency to construct their modulation transfer functions. These functions were classified according to their shape (e.g., band-, low-, high-, and all-pass). IC neurons having different temporal firing patterns to simple tone bursts (tonic, chopper, onset-late, and onset-immediate) exhibited different selectivities for SAM signals. All tonic and 83% of chopper neurons responded robustly to SAM signals and displayed a variety of spike count-based response functions. These neurons showed a decreased level of time-locking as the modulation frequency was increased, and thereby gave low-pass synchronization-based response functions. In contrast, 64% of onset-immediate, 37% of onset-late and 17% of chopper units failed to respond to SAM signals at any modulation frequency tested (5-800 Hz). Those onset neurons that did respond to SAM showed poor time-locking (i.e., non-significant levels of synchronization). We obtained evidence that the poor SAM response of some onset and chopper neurons was due to a preference for short-duration signals. These data suggest that tonic and most chopper neurons are better-suited for the processing of long-duration SAM signals related to passive hearing, whereas onset neurons are better-suited for the processing of short, pulsatile signals such as those used in echolocation.

PMID:
8592300
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center