Format

Send to

Choose Destination
See comment in PubMed Commons below
J Invest Dermatol. 1996 Jan;106(1):102-8.

Studies in vitro on the role of alpha v and beta 1 integrins in the adhesion of human dermal fibroblasts to provisional matrix proteins fibronectin, vitronectin, and fibrinogen.

Author information

1
Department of Dermatology, State University of New York at Stony Brook 11794-8165, USA.

Abstract

Fibroblasts that migrate into a wound during the early stages of repair use cell surface integrins to interact with extracellular molecules as they move away from the interstitial matrix of normal tissue and into the provisional matrix of the wound. Therefore, to understand a critical phase of wound healing, it is necessary to understand the details of integrin involvement. Normal adult human dermal fibroblasts in culture express many receptors for the provisional matrix proteins fibronectin, vitronectin, and fibrinogen, including the integrins alpha 3 beta 1, alpha 4 beta 1, alpha 5 beta 1, alpha v beta 1, alpha v beta 3, and alpha v beta 5. We used quantitative flow cytometry to estimate the relative numbers of these receptors and immunoprecipitation to confirm the expression of alpha v beta 1. Adult human dermal fibroblasts primarily use beta 1 integrins, alpha 4 beta 1, alpha 5 beta 1, and possibly alpha v beta 1, for attachment to fibronectin. alpha v beta 3 and perhaps other integrins containing the alpha v subunit serve fibroblasts as secondary or auxiliary receptors for fibronectin. In contrast, these cells use alpha v integrins but probably not beta 1 integrins for attachment to vitronectin. alpha v beta 3 and alpha v beta 5 apparently act in concert to mediate attachment to vitronectin, and these two integrins may perform different functions during wound repair. Fibroblast adhesion to certain preparations of fibrinogen occurs, at least partially, through the small amount of fibronectin present in the preparations. Fibroblast attachment to fibrinogen purified free of fibronectin also occurs, and that was demonstrated with a sensitive new assay called electrical cell-substrate impedance sensing. Fibroblast attachment to pure fibrinogen can be inhibited by RGD peptide, suggesting that integrins are involved.

PMID:
8592057
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center