Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Health Perspect. 1995 Jun;103 Suppl 5:9-12.

Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D.

Author information

1
Center for Agricultural Molecular Biology, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231, USA.

Abstract

Comamonas testosteroni YZW-D was isolated from Passaic River sediment for its ability to degrade isophthalate and terephthalate. Degradation of the two isomeric compounds proceeds via separately inducible catabolic pathways that converge at protocatechuate. Analysis of the catabolic pathways by which these two isomers are degraded demonstrated that a cis-dihydrodiol intermediate is involved in both pathways. The genes for the conversion of isophthalate and terephthalate to protocatechuate were cloned on a single fragment of genomic DNA from C. testosteroni YZW-D. The two operons were located by subcloning and mutant complementation experiments. The regions coding for the two degradative pathways were sequenced. Analysis of the nucleotide sequence for the isophthalate degradation operon located genes for a dioxygenase, a transport protein, a cis-dihydrodiol dehydrogenase, and a reductase. Analysis of the nucleotide sequence for the terephthalate degradation operon located genes for a regulatory protein, a transport protein, a dioxygenase large subunit, a dioxygenase small subunit, a cis-dihydrodiol dehydrogenase, and a reductase.

PMID:
8565920
PMCID:
PMC1519302
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center