Send to

Choose Destination
See comment in PubMed Commons below
Development. 1996 Jan;122(1):231-41.

The dorsal neural tube organizes the dermamyotome and induces axial myocytes in the avian embryo.

Author information

Section of Molecular and Cellular Biology, University of California, Davis 95616, USA.


Somites, like all axial structures, display dorsoventral polarity. The dorsal portion of the somite forms the dermamyotome, which gives rise to the dermis and axial musculature, whereas the ventromedial somite disperses to generate the sclerotome, which later comprises the vertebrae and intervertebral discs. Although the neural tube and notochord are known to regulate some aspects of this dorsoventral pattern, the precise tissues that initially specify the dermamyotome, and later the myotome from it, have been controversial. Indeed, dorsal and ventral neural tube, notochord, ectoderm and neural crest cells have all been proposed to influence dermamyotome formation or to regulate myocyte differentiation. In this report we describe a series of experimental manipulations in the chick embryo to show that dermamyotome formation is regulated by interactions with the dorsal neural tube. First, we demonstrate that when a neural tube is rotated 180 degrees around its dorsoventral axis, a secondary dermamyotome is induced from what would normally have developed as sclerotome. Second, if we ablate the dorsal neural tube, dermamyotomes are absent in the majority of embryos. Third, if we graft pieces of dorsal neural tube into a ventral position between the notochord and ventral somite, a dermamyotome develops from the sclerotome that is proximate to the graft, and myocytes differentiate. In addition, we also show that myogenesis can be regulated by the dorsal neural tube because when pieces of dorsal neural tube and unsegmented paraxial mesoderm are combined in tissue culture, myocytes differentiate, whereas mesoderm cultures alone do not produce myocytes autonomously. In all of the experimental perturbations in vivo, the dorsal neural tube induced dorsal structures from the mesoderm in the presence of notochord and floorplate, which have been reported previously to induce sclerotome. Thus, we have demonstrated that in the context of the embryonic environment, a dorsalizing signal from the dorsal neural tube can compete with the diffusible ventralizing signal from the notochord. In contrast to dorsal neural tube, pieces of ventral neural tube, dorsal ectoderm or neural crest cells, all of which have been postulated to control dermamyotome formation or to induce myogenesis, either fail to do so or provoke only minimal inductive responses in any of our assays. However, complicating the issue, we find consistent with previous studies that following ablation of the entire neural tube, dermamyotome formation still proceeds adjacent to the dorsal ectoderm. Together these results suggest that, although dorsal ectoderm may be less potent than the dorsal neural tube in inducing dermamyotome, it does nonetheless possess some dermamyotomal-inducing activity. Based on our data and that of others, we propose a model for somite dorsoventral patterning in which competing diffusible signals from the dorsal neural tube and from the notochord/floorplate specify dermamyotome and sclerotome, respectively. In our model, the positioning of the dermamyotome dorsally is due to the absence or reduced levels of the notochord-derived ventralizing signals, as well as to the presence of dominant dorsalizing signals. These dorsal signals are possibly localized and amplified by binding to the basal lamina of the ectoderm, where they can signal the underlying somite, and may also be produced by the ectoderm as well.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center