Format

Send to

Choose Destination
Plasmid. 1995 Sep;34(2):119-31.

The Corynebacterium xerosis composite transposon Tn5432 consists of two identical insertion sequences, designated IS1249, flanking the erythromycin resistance gene ermCX.

Author information

1
Department of Genetics, University of Bielefeld, Germany.

Abstract

Analysis of the 50-kb R-plasmid pTP10 from the clinical isolate Corynebacterium xerosis M82B revealed that the erythromycin resistance gene, ermCX, is located on a 4524-bp composite transposable element, Tn5432. The ends of Tn5432 are identical, direct repeats of an insertion sequence, designated IS1249, encoding a putative transposase of the IS256 family. IS1249 consists of 1385 bp with 45/42 imperfect terminal inverted repeats. The nucleotide sequence of the 1754-bp Tn5432 central region is 99% identical to the previously sequenced erythromycin resistance region of the Corynebacterium diphtheriae plasmid pNG2. It encodes the erythromycin resistance gene, ermCX, and an ORF homologous to the amino-terminal end of the transposase of IS31831 from Corynebacterium glutamicum. Transposons with regions flanking the insertion sites were recovered from the C. glutamicum chromosome by a plasmid rescue technique. Insertion of Tn5432 created 8-bp target site duplications. A Tn5432-induced isoleucine/valine-auxotrophic mutant was found to carry the transposon in the 5' region of the ilvBNC cluster; in pTP10 the transposon is inserted in a region similar to replication and partitioning functions of the Enterococcus faecalis plasmid pAD1 and the Agrobacterium tumefaciens plasmid pTAR.

PMID:
8559800
DOI:
10.1006/plas.1995.9995
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center