Send to

Choose Destination
Nature. 1996 Feb 1;379(6564):455-8.

Two mechanisms of quantized calcium release in skeletal muscle.

Author information

Department of Biological Chemistry, University of Maryland School of Medicine, Baltimore 21201, USA.


Skeletal muscle uses voltage sensors in the transverse tubular membrane that are linked by protein-protein interactions to intracellular ryanodine receptors, which gate the release of calcium from the sarcoplasmic reticulum. Here we show, by using voltage-clamped single fibres and confocal imaging, that stochastic calcium-release events, visualized as Ca2+ sparks, occur in skeletal muscle and originate at the triad. Unitary triadic Ca(2+)-release events are initiated by the voltage sensor in a steeply voltage-dependent manner, or occur spontaneously by a mechanism independent of the voltage sensor. Large-amplitude events also occur during depolarization and consist of two or more unitary events. We propose a 'dual-control' model for discrete Ca2+ release events from the sacroplasmic reticulum that unifies diverse observations about Ca(2+)-signalling in frog skeletal muscle, and that may be applicable to other excitable cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center