Send to

Choose Destination
See comment in PubMed Commons below
J Leukoc Biol. 1996 Jan;59(1):67-74.

Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1.

Author information

Rega Institute for Medical Research, University of Leuven, Belgium.


Structurally, the monocyte chemotactic proteins MCP-1, -2, and -3 form a subfamily of the C-C or beta-chemokines. Like other chemokines, MCPs are produced by a variety of cells on stimulation with cytokines (interleukin-1, tumor necrosis factor-alpha, interferon-gamma), bacterial and viral products or mitogens. MCP-1 levels are enhanced during infection and inflammation, which are characterized by leukocyte infiltration. In vitro, MCPs are chemotactic for a distinct spectrum of target cells and show different specific biological activities depending on the cell type and the chemokine tested. MCP-3 has the broadest range in that it activates monocytes, dendritic cells, lymphocytes, natural killer cells, eosinophils, basophils, and neutrophils. The most sensitive cells to all three MCPs are lymphocytes and monocytes. MCP-1 is a potent basophil activator but does not attract eosinophils, whereas, at higher concentrations, MCP-2 also stimulates both eosinophils and basophils. The signal transduction of MCPs on monocytes involves at least two G protein-linked C-C chemokine receptors: C-C CKR-1 binds MCP-3 and C-C CKR-2 binds MCP-1 and MCP-3 but not MCP-2. Receptor binding leads to enhanced [Ca2+]i for all chemokines except for MCP-2.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center