Format

Send to

Choose Destination
EMBO J. 1995 Dec 15;14(24):6184-92.

Physical and functional interactions between p53 and cell cycle co-operating transcription factors, E2F1 and DP1.

Author information

1
Ludwig Institute for Cancer Research, St Mary's Hospital Medical School, London, UK.

Abstract

One way in which wild-type p53 is able to regulate cell cycle progression is thought to be via the induction of its downstream target gene Waf1/CIP1, thus indirectly regulating the transcriptional activity of E2F. The E2F transcription factors are known to be key effectors of the cell cycle. We report here that there is a physical and functional interaction between p53 and two of the components of the E2F transcription factors, E2F1 and DP1. The expression of wild-type p53 can inhibit the transcriptional activity of E2F, and the expression of both E2F1 and DP1 can also downregulate p53-dependent transcription. The transcriptional activity of p53 is known to be inhibited by the direct binding of mdm2, but we demonstrate here that both E2F1 and DP1 can inhibit p53 transcriptional activity independently of mdm2. Detailed studies of protein-protein interactions have provided evidence that E2F1 and its co-operating factor DP1 can complex with p53 both in vitro and in vivo.

PMID:
8557038
PMCID:
PMC394743
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center