Send to

Choose Destination
Oncogene. 1995 Dec 21;11(12):2477-86.

Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression.

Author information

Department of Pathology, Columbia-Presbyterian Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.


Cultured human melanoma cells lose proliferative capacity and terminally differentiate after treatment with the combination of recombinant human fibroblast interferon (IFN-beta) and mezerein (MEZ). Subtraction hybridization of cDNA libraries prepared from actively proliferating human H0-1 melanoma cells from cDNA libraries produced from H0-1 cells treated with IFN-beta + MEZ identifies a novel melanoma differentiation-associated (mda) cDNA, mda-7, that displays elevated expression in differentiation inducer-treated H0-1 cells. mda-7 encodes a novel protein of 206 amino acids with a predicted size of 23.8 kDa. The level of mda-7 mRNA is elevated in actively proliferating normal human melanocytes versus primary and metastatic human melanomas. In the Matrigel-assisted melanoma progression model, mda-7 expression decreases in early vertical growth phase primary human melanoma cells selected for autonomous or enhanced tumor formation in nude mice. Treatment of human melanomas with IFN-beta + MEZ, and to a lesser extent with MEZ, results in growth suppression and induced or enhanced mda-7 expression. Immunoprecipitation analyses using peptide-derived rabbit polyclonal antibodies detect increases in mda-7 protein, and a higher molecular weight protein of approximately 90 to 100 kDa, in MEZ and IFN-beta + MEZ treated H0-1 cells. mda-7 is a highly conserved gene with an homologous sequence in the genome of yeast. Transfection of mda-7 expression constructs into H0-1 and C8161 human melanoma cells reduces growth and inhibits colony formation. These results confirm that mda-7 has antiproliferative properties in human melanoma cells and in this context may contribute to terminal cell differentiation. The mda-7 gene may also function as a negative regulator of melanoma progression.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center