Format

Send to

Choose Destination
See comment in PubMed Commons below
Structure. 1995 Sep 15;3(9):907-14.

The prosegment-subtilisin BPN' complex: crystal structure of a specific 'foldase'.

Author information

1
Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, USA.

Abstract

BACKGROUND:

The folding of the bacterial protease subtilisin BPN' (SBT) is dependent on its 77-residue prosegment, which is then autocatalytically removed to give the mature enzyme. Mature subtilisin represents a class of proteins that lacks an efficient folding pathway. Refolding of mature SBT is extremely slow unless catalyzed by the independently expressed prosegment, leading to a bimolecular complex.

RESULTS:

We report the crystal structure at 2.0 A resolution of the prosegment-SBT complex and consider its implications for prosubtilisin BPN' maturation and folding catalysis. The prosegment forms a compact domain that binds SBT through an extensive interface involving the enzyme's two parallel surface helices (residues 104-116 and 133-144), supplying negatively charged caps to the N termini of these helices. The prosegment C terminus binds in the enzyme active site in a product-like manner, with Tyr77 in the P1 binding pocket.

CONCLUSIONS:

The structure of the complex supports a unimolecular mechanism for prosubtilisin cleavage, involving a 25 A rearrangement of the SBT N terminus in a late folding step. A mechanism of folding catalysis in which the two helices and their connecting beta strand form a prosegment-stabilized folding nucleus is proposed. While this putative nucleus is stabilized by prosegment binding, the N-terminal and C-terminal subdomains of SBT could fold by propagation.

PMID:
8535784
DOI:
10.1016/S0969-2126(01)00225-8
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center