Format

Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 1995 Oct;69(4):1272-80.

Voltage sensing by fluorescence resonance energy transfer in single cells.

Author information

1
Howard Hughes Medical Institute, University of California, San Diego, La Jolla 92093-0647, USA.

Abstract

A new mechanism has been developed for achieving fast ratiometric voltage-sensitive fluorescence changes in single cells using fluorescence resonance energy transfer. The mechanism is based on hydrophobic fluorescent anions that rapidly redistribute from one face of the plasma membrane to the other according to the Nernst equation. A voltage-sensitive fluorescent readout is created by labeling the extracellular surface of the cell with a second fluorophore, here a fluorescently labeled lectin, that can undergo energy transfer with the membrane-bound sensor. Fluorescence resonance energy transfer between the two fluorophores is disrupted when the membrane potential is depolarized, because the anion is pulled to the intracellular surface of the plasma membrane far from the lectin. Bis-(1,3-dialkyl-2-thiobarbiturate)-trimethineoxonols, where alkyl is n-hexyl and n-decyl (DiSBA-C6-(3) and DiSBA-C10-(3), respectively) can function as donors to Texas Red labeled wheat germ agglutinin (TR-WGA) and acceptors from fluorescein-labeled lectin (FI-WGA). In voltage-clamped fibroblasts, the translocation of these oxonols is measured as a displacement current with a time constant of approximately 2 ms for 100 mV depolarization at 20 degrees C, which equals the speed of the fluorescence changes. Fluorescence ratio changes of between 4% and 34% were observed for a 100-mV depolarization in fibroblasts, astrocytoma cells, beating cardiac myocytes, and B104 neuroblastoma cells. The large fluorescence changes allow high-speed confocal imaging.

PMID:
8534797
PMCID:
PMC1236357
DOI:
10.1016/S0006-3495(95)80029-9
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center