Send to

Choose Destination
Neuropharmacology. 1995 Aug;34(8):1081-7.

The inhibitory mGluR agonist, S-4-carboxy-3-hydroxy-phenylglycine selectively attenuates NMDA neurotoxicity and oxygen-glucose deprivation-induced neuronal death.

Author information

Center for the Study of Nervous System Injury, Washington University School of Medicine, St Louis, MO 63110, USA.


We examined the effect of two novel phenylglycine derivative drugs on excitotoxicity in murine cortical cell cultures: S-4-carboxy-3-hydroxy-phenylglycine (4C3HPG), a selective agonist of mGluRs 2/3 and an antagonist at mGluRs 1/5, and S-3 hydroxy-phenylglycine (3HPG), an agonist of mGluRs 1/5. 4C3HPG attenuated slowly-triggered NMDA-induced excitotoxic neuronal death, as well as the death induced by combined oxygen-glucose deprivation, but did not affect slowly-triggered excitotoxicity induced by AMPA or kainate. As expected, 4C3HPG also reduced NMDA-induced increases in cAMP in near-pure neuronal cultures, and the protective effect of 4C3HPG on NMDA toxicity could be reversed by adding 8-(4-chlorophenylthio)-adenosine 3':5'-cyclic-monophosphate (CPT cAMP) to the exposure medium. In contrast, 3HPG did not did not have any protective effects in these paradigms; in fact, slowly-triggered NMDA-induced excitotoxicity and the neuronal cell death induced by oxygen-glucose deprivation were potentiated. These results are consistent with the idea that the "inhibitory" mGluRs 2/3 exert a negative modulatory action on NMDA receptor-mediated excitotoxicity via reduction in neuronal cAMP levels.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center