Send to

Choose Destination
J Neurosci Res. 1995 Sep 1;42(1):124-30.

AMPA receptors shape Ca2+ responses in cortical oligodendrocyte progenitors and CG-4 cells.

Author information

Laboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.


Intracellular calcium signals triggered by glutamate receptor activation were studied in primary cortical oligodendrocyte lineage cells and in the oligodendrocyte cell line CG-4. Glutamate, kainate, and AMPA (30-300 microM) increased [Ca2+]i in both types of cells at the stage of oligodendrocyte progenitors (O-2A; GD3+) or pro-oligodendroblasts (O4+). The peak amplitude of Ca2+ responses to glutamate receptor agonists was significantly larger in cortical cells. In CG-4 and in cortical cells, the majority (more than 90%) of bipolar GD3+ or multipolar O4+ cells responded to kainate. In all the cells analyzed, kainate was more efficacious than AMPA and glutamate. The percentage of bipolar or multipolar cells responding to glutamate was significantly lower in the CG-4 cell line than in primary cultures. Cellular responses typical of metabotropic glutamate receptor activation were observed in 20% of the cortical O-2A progenitors, but in none of the CG-4 cells. The AMPA-selective antagonist GYKI 52466 blocked kainate-induced Ca2+ responses in cortical O-2A cells. The selective AMPA receptor modulator cyclothiazide (30 microM) greatly potentiated the effects of AMPA (30-100 microM) on [Ca2+]i in cortical and CG-4 cells. Our findings indicate that Ca2+ responses in cells of the oligodendrocyte lineage are primarily shaped by functional AMPA receptors.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center