Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 1995 Dec 5;217(1):41-51.

Requirement of ATP hydrolysis for assembly of ClpA/ClpP complex, the ATP-dependent protease Ti in Escherichia coli.

Author information

  • 1Department of Molecular Biology, College of Natural Sciences, Seoul National University, Korea.


The ATP-dependent protease Ti (Clp) consists of two distinct components, ClpP containing the serine active sites for proteolysis and ClpA having two ATP-binding sites. A ClpA variant (ClpAT) carrying Thr in place of Met169 is highly soluble but indistinguishable from the wild-type ClpA in its ability to hydrolyze ATP and to support the ClpP-mediated proteolysis. Here we show that ATP hydrolysis is essential for assembly of ClpAT/ClpP complex upon analysis of the mixture of its components by gel filtration followed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Either ADP or adenosine 5'-(beta,gamma-imido)-triphosphate could not support the complex formation. Furthermore, ClpAT/K501T which carries a mutation in the second ATP-binding site and therefore is unable to cleave ATP could not interact with ClpP. On the other hand, ClpAT/K220T carrying a mutation in the first site and ClpP could be assembled into a complex at 2 mM ATP but not at 0.5 mM, at which concentration the trimeric mutant protein can not form a hexamer. These results indicate that assembly of protease Ti requires hydrolysis of ATP by ClpA in addition to its binding for hexamer formation.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center