Format

Send to

Choose Destination
Eur J Biochem. 1995 Nov 1;233(3):766-71.

The functional integration of a polytopic membrane protein of Escherichia coli is dependent on the bacterial signal-recognition particle.

Author information

1
Institut für Physikalische Biochemie, Universität München, Germany.

Abstract

In eukaryotes, the cotranslational targeting of proteins to the endoplasmic reticular membrane is initially mediated by the signal-recognition particle (SRP), a ribonucleoprotein complex consisting of the 7SL RNA and six protein subunits. Since the discovery of sequence homology between (a) the Escherichia coli 4.5S RNA (Ffs) and 7SL RNA, and (b) the E. coli P48 (Ffh) and SRP 54-kDa subunit, more evidence has been obtained that E. coli also possesses an SRP-type pathway that acts in the translocation of secreted proteins. Such a pathway could possibly be involved in the cotranslational integration of hydrophobic membrane proteins that cannot be effectively targeted post-translationally due to folding and aggregation. In this study, we report that disruption of the E. coli SRP complex with a dominant lethal 4.5S RNA mutant in vivo prevents functional membrane integration of the E. coli lactose permease (LacY). Likewise, depletion of the P48 (Ffh) protein also results in a decrease in the amount of functional LacY inserted into the E. coli plasma membrane. In direct contrast, inhibition of SecA function does not affect LacY integration. These results suggest a major function of the bacterial SRP in the targeting and subsequent integration of hydrophobic membrane proteins as opposed to SecA mediating the post-translational targeting of secretory proteins.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center