Send to

Choose Destination
EMBO J. 1995 Nov 15;14(22):5457-66.

Electron transport regulates exchange of two forms of photosystem II D1 protein in the cyanobacterium Synechococcus.

Author information

Department of Plant Physiology, University of UmeƄ, Sweden.


Synechococcus sp. PCC 7942 modulates photosynthetic function by transiently replacing the constitutive D1 photosystem II protein, D1:1, with an alternate form, D1:2, to help counteract photoinhibition under excess light. We show that a temperature drop from 37 to 25 degrees C also drives D1:1/D1:2 exchange under constant, moderate light. Chilling or light-induced D1 exchange results from rapid loss of psbAI message coding for D1:1 and accumulation of psbAII and psbAIII messages coding for D1:2. During chilling, a large pool of a novel form, D1:2*, transiently accumulates, distinguishable from normal D1 by an increase in apparent molecular mass. D1:2* is not phosphorylated and is probably a functionally inactive, incompletely processed precursor. After acclimation to 25 degrees C, D1:2* disappears and D1:1 again predominates, although substantial D1:2 remains. Partial inhibition of electron transport under constant, moderate light also triggers the D1 exchange process. These treatments all increase excitation pressure on photosystem II relative to electron transport. Therefore, information from photosynthetic electron transport regulates D1 exchange without any requirement for a change in light intensity or quality, possibly via a redox sensing mechanism proximal to photosystem II.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center