Cardiac intercellular communication: consequences of connexin distribution and diversity

Braz J Med Biol Res. 1995 Apr;28(4):415-25.

Abstract

Gap junctions contain channels which allow the exchange of ions and small molecules between adjacent cells. In the heart, these channels are crucial for normal intercellular current flow and the propagation of action potentials throughout the myocardium. Molecular cloning studies have demonstrated that these channels are formed by members of a family of related proteins called connexins each containing conserved and unique regions. There are several consequences of this multiplicity of connexins. Multiple connexins are expressed in differing, but sometimes overlapping, distributions within cardiovascular and other tissues. Connexin40, connexin43, and connexin45 are all found in cardiac myocytes, but their abundance differs in specialized cardiac regions with disparate conductive properties. Individual connexins form channels with differing voltage-dependence, conductance, and permeability properties, as demonstrated by functional expression of the cloned sequences. Connexins differ in their modification by phosphorylation, which may contribute to physiological regulation of intercellular communication. Expression of multiple connexins may lead to the formation of multiple channel types in a single tissue or cell and potentially allows mixing to form heterotypic and/or heteromeric channels. Thus, multiple connexins may contribute to the differences in intercellular resistance in cardiac regions with differing conductive properties and possibly may allow differences in the signalling molecules that pass between cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Chickens
  • Connexins / metabolism
  • Connexins / physiology*
  • Dogs
  • Electric Conductivity
  • Gap Junctions / physiology*
  • Humans
  • Mice
  • Myocardium / cytology*
  • Rats

Substances

  • Connexins