Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5613-7.

Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid.

Author information

Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709.


Cells of the yeast Saccharomyces cerevisiae are delayed in the G2 phase of the cell cycle following chromosomal DNA damage. This arrest is RAD9-dependent and suggests a signaling mechanism(s) between chromosomal lesions and cell cycling. We examined the global nature of growth inhibition caused by an HO endonuclease-induced double-strand break (DSB) at a 45-bp YZ sequence (from MAT YZ) in a non-yeast region of a dispensable single-copy plasmid. The presence of an unrepaired DSB results in cellular death even though the plasmid is dispensable. Loss of cell viability is partially dependent on the RAD9 gene product. Following induction of the DSB, 40% of RAD+ and 49% of rad9 delta cells [including both unbudded (G1) and budded (S plus G2) cells] did not progress further in the cell cycle. The remaining RAD+ cells progressed to form microcolonies (< 30 cells) containing aberrantly shaped inviable cells. For the rad9 delta mutant, the majority of the remaining cells produced viable colonies accounting for the greater survival of the rad9 delta strain. Based on the profound effects of a single nonchromosomal DNA lesion, this system provides a convenient means for studying the signaling effects of a DNA lesion, as well as for designing strategies for modulating cell proliferation.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center