Send to

Choose Destination
Eur J Clin Pharmacol. 1993;44(4):349-55.

Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine.

Author information

Department of Clinical Pharmacology, Odense University, Denmark.


Nine extensive metabolizers (EMs) and eight poor metabolizers (PMs) of sparteine took a single oral dose of 100 mg of desipramine HCI before and while taking paroxetine 20 mg per day. Before paroxetine, the median of the total desipramine clearance was 7 times higher in EMs than in PMs (102 and 15 l.h-1 respectively). This confirms that desipramine is extensively metabolized via the sparteine/debrisoquine oxidation polymorphism i.e. by CYP2D6. During paroxetine, the median clearances were 22 l.h-1 and 18 l.h-1 in EMs and PMs respectively. The 5-fold decrease in clearance in EMs when desipramine was co-administered with paroxetine confirms that paroxetine is a potent inhibitor of CYP2D6. The lack of effect on clearance in PMs shows that paroxetine is a selective inhibitor of CYP2D6, which is absent from the livers of PMs. Before paroxetine, the median of desipramine clearance via 2-hydroxylation was 40-times higher in EMs than in PMs (56 and 1.4 l.h-1 respectively), but during paroxetine, it was only 2-times higher (6 and 2.9 l.h-1 respectively). The increase in this clearance in PMs suggests that paroxetine is an inducer of the alternative, unidentified P450(s) which catalyze(s) the formation of 2-OH-desipramine in this phenotype. Before paroxetine, the median amounts of 2-OH-desipramine glucuronide recovered in urine were 69% and 68% of the total recovery of 2-OH-desipramine in urine in EMs and PMs respectively. During paroxetine, the corresponding values were 77% and 84%.(ABSTRACT TRUNCATED AT 250 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center