Send to

Choose Destination
See comment in PubMed Commons below
Eur J Biochem. 1993 May 1;213(3):1303-13.

Characterization of the high-affinity oligosaccharide-binding site of the 205-kDa porcine large granular lymphocyte lectin, a member of the leukocyte common antigen family.

Author information

  • 1Institute of Biotechnology, Charles University, Prague, Czech Republic.


Membrane lectins of mammalian large granular lymphocytes are thought to be important receptors in their non-major-histocompatibility complex-restricted activation. A triantennary desialylated oligosaccharide has been reported as the most effective triggering structure [Pospísil M., Kubrycht J., Bezouska K., Táborský O., Novák M. & Kocourek J. (1986) Immunol. Lett. 12, 83-90] while its cell surface receptor has recently been identified in pig natural killer cells as a 205-kDa membrane lectin resembling the proteins of the leukocyte common antigen family (LCA). In this study we have prepared 4-azidophenyl (photoactivatable) and 4-hydroxyphenyl (radio-iodinatable) derivatives of triantennary oligosaccharides by a new procedure which allows the natural conformation of the N-glycosidic linkage between the oligosaccharide and the respective labeling group to be retained. We used these high-affinity ligands to investigate the oligosaccharide-combining site of the 205-kDa lectin. Photoaffinity labeling of the whole cells and solubilized proteins confirmed that a 205-kDa polypeptide constitutes the major cell-surface calcium-independent receptor for triantennary oligosaccharides in pig lymphocytes. Isolation and manual sequencing of two ligand-labeled and eleven other peptides proved that the 205-kDa lectin represents a member of the LCA family expressing exons 4 and 6 during alternative splicing and that the high-affinity binding site is localized in the N-terminal 70-kDa extracellular domain. Binding studies with radiolabeled oligosaccharides and the above carbohydrate-recognition domain subjected to various chemical and enzymatic treatments indicated that the binding of oligosaccharides might be significantly modulated by sialylated O-glycosidically linked lineage-specific carbohydrate epitopes localized within this domain. Affinity chromatography of LCA isolated by conventional methods on immobilized oligosaccharides revealed that only a fraction of these cell-surface glycoproteins expressed high-affinity binding sites for the oligosaccharide ligands. Thus, N-linked oligosaccharide moieties of cell-surface glycoproteins seem to represent possible ligands of LCA that may be important in intercellular adhesion and oligosaccharide-mediated activation of lymphocytes.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center