Send to

Choose Destination
Oncogene. 1993 Jun;8(6):1519-28.

Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression.

Author information

Laboratory of Cell Biology, National Institutes of Health, Bethesda, Maryland 20892.


Overexpression of wild-type p53 prevents cells from entering the S phase of the cell cycle. The amino-terminal transactivation region of p53 is phosphorylated by several protein kinases, including DNA-PK, a nuclear serine/threonine protein kinase that in vitro requires DNA for activity. DNA-PK was recently shown to phosphorylate serines 15 and 37 of human p53 (Lees-Miller et al., 1992. Mol. Cell. Biol., 12, 5041-5049). To prevent phosphorylation at these sites, mutants were constructed that changed the codons for serine 15 or serine 37 to alanine codons. Expression of p53-Ala-37 in stably transformed T98G cells blocked progression of the cells into S phase as well as did the expression of wild-type p53. In contrast, p53-Ala-15 was partially defective in blocking cell cycle progression. Several cell clones transformed with the mutant p53-Ala-15 gene expressed normal levels of p53 mRNA but accumulated little or no detectable p53 protein. However, by using a transient expression system driven by a strong cytomegalovirus promoter, we showed that the inability of p53-Ala-15 to fully block cell cycle progression was not due to inadequate levels of expression or to a failure of the mutant protein to accumulate in the nucleus. These results suggest that phosphorylation of Ser-15 may affect p53 function.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center