Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1993 Jun;13(6):3434-44.

Structure of the yeast TAP1 protein: dependence of transcription activation on the DNA context of the target gene.

Author information

Department of Genetics, University of Washington, Seattle 98195.


Sequence data are presented for the Saccharomyces cerevisiae TAP1 gene and for a mutant allele, tap1-1, that activates transcription of the promoter-defective yeast SUP4 tRNA(Tyr) allele SUP4A53T61. The degree of in vivo activation of this allele by tap1-1 is strongly affected by the nature of the flanking DNA sequences at 5'-flanking DNA sequences as far away as 413 bp from the tRNA gene and by 3'-flanking sequences as well. We considered the possibility that this dependency is related to the nature of the chromatin assembled on these different flanking sequences. TAP1 encodes a protein 1,006 amino acids long. The tap1-1 mutation consists of a thymine-to-cytosine DNA change that changes amino acid 683 from tyrosine to histidine. Recently, Amberg et al. reported the cloning and sequencing of RAT1, a yeast gene identical to TAP1, by complementation of a mutant defect in poly(A) RNA export from the nucleus to the cytoplasm (D. C. Amberg, A. L. Goldstein, and C. N. Cole, Genes Dev. 6:1173-1189, 1992). The RAT1/TAP1 gene product has extensive sequence similarity to a yeast DNA strand transfer protein that is also a riboexonuclease (variously known as KEM1, XRN1, SEP1, DST2, or RAR5; reviewed by Kearsey and Kipling [Trends Cell Biol. 1:110-112, 1991]). The tap1-1 amino acid substitution affects a region of the protein in which KEM1 and TAP1 are highly similar in sequence.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center