Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1993 Jun;13(6):3301-10.

Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation.

Author information

  • 1Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599.


Nuclear factor kappa B (NF-kappa B) is a critical regulator of several genes which are involved in immune and inflammation responses. NF-kappa B, consisting of a 50-kDa protein (p50) and a 65-kDa protein (p65), is bound to a cytoplasmic retention protein called I kappa B. Stimulation of cells with a variety of inducers, including cytokines such as tumor necrosis factor and interleukin-1, leads to the activation and the translocation of p50/65 NF-kappa B into the nucleus. However, the in vivo mechanism of the activation process remains unknown. Here, we provide the first evidence that the in vivo mechanism of NF-kappa B activation is through the phosphorylation and subsequent loss of its inhibitor, I kappa B alpha. We also show that both I kappa B alpha loss and NF-kappa B activation are inhibited in the presence of antioxidants, demonstrating that the loss of I kappa B alpha is a prerequisite for NF-kappa B activation. Finally, we demonstrate that I kappa B alpha is rapidly resynthesized after loss, indicating that an autoregulatory mechanism is involved in the regulation of NF-kappa B function. We propose a mechanism for the activation of NF-kappa B through the modification and loss of I kappa B alpha, thereby establishing its role as a mediator of NF-kappa B activation.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center