Format

Send to

Choose Destination
Biochim Biophys Acta. 1993 Apr 21;1163(1):75-80.

Characterization of yeast EF-1 alpha: non-conservation of post-translational modifications.

Author information

1
Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4935.

Abstract

Elongation factor 1 alpha (EF-1 alpha) is an abundant cellular protein and its amino-acid sequence has been inferred from numerous organisms, including bacteria, archaebacteria, plants and animals. In large measure, it would appear that the overall structure has probably been maintained given the 33% identity and 56% similarity of Escherichia coli EF-Tu with human EF-1 alpha. Chemical sequencing of EF-Tu and EF-1 alpha has revealed that these proteins are post-translationally modified. In order to assess the possible function of these modifications, we have chemically sequenced the EF-1 alpha from the lower eukaryote Saccharomyces cerevisiae (yeast). To our surprise, the methylation pattern of yeast EF-1 alpha was quite different from either rabbit or brine shrimp EF-1 alpha with only the trimethyllysine at position 79 conserved although the yeast protein is 81% identical to rabbit EF-1 alpha. A dimethyllysine was observed at position 316 which corresponds to a trimethyllysine in brine shrimp and rabbit EF-1 alpha. The other positions in yeast EF-1 alpha which were methylated were unrelated to the other six possible positions for modification observed in brine shrimp or rabbit EF-1 alpha. In addition, the unique glyceryl-phosphorylethanolamine observed in mammalian EF-1 alpha and suspected in brine shrimp EF-1 alpha was not found in yeast EF-1 alpha.

PMID:
8476932
DOI:
10.1016/0167-4838(93)90281-u
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center