Format

Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1993 Apr;175(7):1936-45.

Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis.

Author information

  • 1Department of Microbiology, College of Biological Science, University of Guelph, Ontario, Canada.

Abstract

To investigate the chemical mechanism of silicate binding to the surface of Bacillus subtilis, we chemically modified cell wall carboxylates to reverse their charge by the addition of an ethylenediamine ligand. For up to 9 weeks, mixtures of Si, Al-Fe-Si, and Al-Fe-Si plus toxic heavy metals were reacted with these cells for comparison with control cells and abiotic solutions. In general, more Si and less metal were bound to the chemically modified surfaces, thereby showing the importance of an electropositive charge in cell walls for fine-grain silicate mineral development. The predominant reaction for this development was the initial silicate-to-amine complexation in the peptidoglycan of ethylenediamine-modified and control cell walls, although metal ion bridging between electronegative sites and silicate had an additive effect. The binding of silicate to these bacterial surfaces can thus be described as outer sphere complex formation because it occurs through electrostatic interaction.

PMID:
8458835
PMCID:
PMC204267
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center