Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1993 Mar 9;32(9):2371-7.

Spectroscopic and functional characterization of the putative transmembrane segment of the minK potassium channel.

Author information

Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel.


MinK (Isk) is a voltage-dependent K+ channel whose gene has been recently cloned and which consists of 130 amino acids [Takumi, T., Ohkubo, H., & Nakanishi, S. (1988) Science 242, 1042-1045]. The protein contains one putative transmembrane segment by hydropathy analysis. Whether this putative transmembrane segment is involved in the function of the protein was studied. A 32 amino acid peptide (residues 41-72) with the sequence SKLEALYILMVLGFFGFFTLGIMLSYIRSKKL, containing the hypothesized transmembrane domain, designed TM-minK, was synthesized and fluorescently labeled. The alpha-helical content of TM-minK, assessed in methanol using circular dichroism (CD), was 57%. The fluorescent emission spectrum of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled TM-minK displayed a blue shift upon binding to small unilamellar vesicles (SUV), reflecting a relocation of the fluorescent probe to an environment of increased apolarity, i.e., within the lipid bilayer. The increase in NBD's fluorescence upon mixing NBD-labeled TM-minK with small unilamellar vesicles (SUV) was used to generate a binding isotherm, from which was derived a surface partition coefficient of 5.5 x 10(4) M-1. Fluorescence energy transfer measurements between carboxyfluoresceine-labeled and rhodamine-labeled analogues suggest that TM-minK aggregates within membranes. In addition, single-channel experiments revealed that TM-minK can form single channels in planar lipid membranes only when a trans negative potential is applied. The findings herein experimentally support a role of the transmembrane segment of minK both in the assembly and as a constituent of the pore formed by the protein.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center