Send to

Choose Destination
J Clin Invest. 1993 Jan;91(1):257-63.

Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors.

Author information

Department of Biochemistry, Showa University, School of Dentistry, Tokyo, Japan.


The mechanism of action of macrophage colony-stimulating factor (M-CSF) in osteoclast development was examined in a co-culture system of mouse osteoblastic cells and spleen cells. In this co-culture, osteoclast-like multinucleated cells (MNCs) were formed within 6 d in response to 10 nM 1 alpha,25(OH)2D3 added only for the final 2 d of culture. Simultaneously adding hydroxyurea for the final 2 d completely inhibited proliferation of cultured cells without affecting 1 alpha,25(OH)2D3-stimulated MNC formation. Autoradiographic examination using [3H]-thymidine revealed that osteoclast progenitors primarily proliferated during the first 4 d, whereas their differentiation into MNCs occurred predominantly during the final 2 d of culture in response to 1 alpha,25(OH)2D3. When anti-M-CSF antibody or anti-M-CSF receptor antibody was added either for the first 4 d or for the final 2 d, the MNC formation was similarly inhibited. In co-cultures of normal spleen cells and osteoblastic cells obtained from op/op mice, which cannot produce functionally active M-CSF, the lack of M-CSF either for the first 4 d or for the final 2 d failed to form MNCs in response to 1 alpha,25(OH)2D3 added for the last 2 d. These results clearly indicate that M-CSF is indispensable for both proliferation of osteoclast progenitors and their differentiation into mature osteoclasts.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation Icon for PubMed Central
Loading ...
Support Center