Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1993 Nov;13(11):7029-35.

Identification of distinct roles for separate E1A domains in disruption of E2F complexes.

Author information

1
Section of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

The adenovirus E1A protein can disrupt protein complexes containing the E2F transcription factor in association with cellular regulatory proteins such as the retinoblastoma gene product (Rb) and the Rb-related p107 protein. Previous experiments have shown that the CR1 and CR2 domains of E1A are required for this activity. We now demonstrate that the CR2 domain is essential for allowing E1A to interact with the E2F-Rb or the E2F-p107-cyclin A-cdk2 complex. Multimeric complexes containing E1A can be detected when the CR1 domain has been rendered inactive by mutation. In addition, the E1A CR1 domain, but not the CR2 domain, is sufficient to prevent the interaction of E2F with Rb or p107. On the basis of these results, we suggest a model whereby the CR2 domain brings E1A to the E2F complexes and then, upon a normal equilibrium dissociation of Rb or p107 from E2F, the E1A CR1 domain is able to block the site of interaction on Rb or p107, thereby preventing the re-formation of the complexes.

PMID:
8413292
PMCID:
PMC364764
[Indexed for MEDLINE]
Free PMC Article

MeSH terms, Substances

MeSH terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center