Send to

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 1993 Jul;4(7):705-13.

MyoD induced cell cycle arrest is associated with increased nuclear affinity of the Rb protein.

Author information

Cancer Center, University of California, San Diego, La Jolla 92093-0636.


In studying the mechanism through which the myogenic determination protein MyoD prevents entry into the S phase of the cell cycle, we have found a relationship between MyoD and the retinoblastoma (Rb) tumor suppressor protein. By direct needle microinjection of purified recombinant MyoD protein into quiescent fibroblasts, which were then induced to proliferate by serum, we found that MyoD arrested progression of the cell cycle, in agreement with studies utilizing expression constructs for MyoD. By studying temporal changes in cells injected with MyoD protein, it was found that MyoD did not prevent serum induced expression of the protooncogene c-Fos, an event that occurs in the G0 to G1 transition of the cycle. Injection of the MyoD protein as late as 8 h after the addition of serum still caused an inhibition in DNA synthesis, suggesting that MyoD inhibits the G1 to S transition as opposed to the G0 to G1 transition. MyoD injection did not prevent the expression of cyclin A. However MyoD injection did result in a block in the increase in Rb extractibility normally seen in late G1 phase cells. As this phenomenon is associated with the hyperphosphorylation of Rb at this point in the cell cycle and is correlated with progression into S phase, this provides further evidence that MyoD blocks the cycle late in G1.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center