Send to

Choose Destination
J Neurophysiol. 1993 Jul;70(1):158-66.

Transient Ca2+ currents in neurons isolated from rat lateral habenula.

Author information

Department of Neurology and Neurological Sciences, Stanford University Medical Center, California 94305.


1. The properties of the low-voltage-activated transient Ca2+ current (LVA, IT) that underlies rhythmic burst firing in neurons of the lateral habenula (LHb) were examined to further our understanding of mechanisms that promote rhythmogenesis in the CNS. We compared these properties with those of IT in thalamic ventrobasal relay neurons (IVB) and of the more slowly inactivating ITs of thalamic reticular neurons (InRt). 2. Patch-clamp techniques were used to record whole cell Ca2+ currents in LHb cells acutely isolated from rats ranging in age from postnatal days 6 to 34 (P6-P34). The LVA current in LHb (ILHb) had a number of properties similar to those of IVB, including activation threshold (near -65 mV) and voltage-dependent steady-state activation [half-activation voltage (V1/2) = -58.5 mV, slope = 3.4 mV-1] and inactivation (V1/2 = -83.5 mV, slope = 5.0 mV-1) functions. 3. ILHb was characterized by biphasic inactivation, with a fast, voltage-dependent time constant (20-50 ms) similar to that of IVB and a slower, voltage-independent decay phase (time constant approximately 120 ms) that was much more prominent than in IVB. Recovery of ILHb from inactivation was monophasic (time constant, 507 ms at -90 mV), and was slower than for IVB and about the same as for InRt. 4. ILHb was relatively insensitive to equimolar substitution of Ba2+ for Ca2+, in contrast to IVB, which was decreased, and InRt, which was enhanced. 5. In computer simulations, these results could not be accounted for by a mixture of the two previously described IT types (IVB and InRt) in individual LHb cells.(ABSTRACT TRUNCATED AT 250 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center