Send to

Choose Destination
Neuron. 1993 Jul;11(1):93-104.

A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs.

Author information

Department of Human Physiology, School of Medicine, University of California Davis 95616.


Using flash photolysis of caged Ca2+ and the membrane capacitance to monitor exocytosis, we have studied the response of single melanotrophs to a step rise in cytosolic Ca2+ concentration ([Ca2+]i). Exocytosis begins with a rapid burst. This burst is followed by a slower phase, which is inhibited at cytosolic pH 6.2, and an ultraslow phase, which is strongly temperature sensitive. The exocytic burst starts with a delay of 6-11 ms and continues at a rate that grows steeply with [Ca2+]i and is half-maximal at [Ca2+]i = 27 microM. At least 3 Ca2+ ions are required to trigger exocytosis. The rate constant at saturating [Ca2+]i suggests that exocytosis of a dense core vesicle takes 40 ms after all Ca2+ ions have bound to their regulatory sites. If docked dense core vesicles cause the exocytic burst, they must decorate the plasma membrane at a mean density of 0.5/micron2.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center