Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1993 Feb 5;268(4):2269-72.

Helicase-catalyzed DNA unwinding.

Author information

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110.


DNA helicases are ubiquitous and multiple helicases have been identified in a number of prokaryotes and eukaryotes. Although it is clear that not all helicases function identically, many of these enzymes possess similar properties that appear to be of general importance for their mechanism of action. For example, the assembly states of most (possibly all) helicases are oligomeric. The prime consequence of an oligomeric helicase is that it possesses multiple DNA binding sites, a feature that is required for any "active" mechanism of DNA unwinding, since it enables a helicase to bind both ss- and duplex DNA or two strands of ss-DNA simultaneously at an unwinding fork. Modulation of the relative affinities of ss- versus duplex DNA for these multiple binding sites through ATP binding and hydrolysis, as has been observed for the E. coli Rep dimer, can provide a mechanism for translocation and processive unwinding of DNA. Along with studies of DNA unwinding, further understanding of helicase mechanisms requires quantitative studies of the equilibria and kinetics of the multiple, linked reactions among protein, DNA, and nucleotide cofactors, including the protein-protein interactions involved in assembly of the oligomeric helicase.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center