Format

Send to

Choose Destination
J Neurochem. 1993 Feb;60(2):588-94.

Brain hydroxyl radical generation in acute experimental head injury.

Author information

1
Central Nervous System Diseases Research, Upjohn Company, Kalamazoo, Michigan.

Abstract

The time course and intensity of brain hydroxyl radical (.OH) generation were examined in male CF-1 mice during the first hour after moderate or severe concussive head injury. Hydroxyl radical production was measured using the salicylate trapping method in which the production of 2,3- and/or 2,5-dihydroxybenzoic acid (DHBA) in brain 15 min after salicylate administration was used as an index of .OH formation. In mice injured with a concussion of moderate severity as defined by the 1-h posttraumatic neurologic recovery (grip score), a 60% increase in 2,5-DHBA formation was observed by 1 min after injury compared with that observed in uninjured mice. The peak in DHBA formation occurred at 15 min after injury (+67.5%; p < 0.02, compared with uninjured). At 30 min, the increase in DHBA lost significance, indicating that the posttraumatic increase in brain .OH formation is a transient phenomenon. In severely injured mice, the peak increase in DHBA (both 2,3- and 2,5-) was observed at 30 min after injury, but also fell off thereafter as with the moderate injury severity. Preinjury dosing of the mice with SKF-525A (50 mg/kg i.p.), an inhibitor of microsomal drug oxidations, did not blunt the posttraumatic increase in salicylate-derived 2,5-DHBA, thus showing that it is not due to increased metabolic hydroxylation. Neither injury nor SKF-525A administration affected the DHBA plasma levels. However, saline perfusion of the injured mice to remove the intravascular blood before brain removal eliminated the injury-induced increase in 2,5-DHBA, but did not affect the baseline levels seen in uninjured mice.(ABSTRACT TRUNCATED AT 250 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center